
GOING ALL IN WITH
DEVOPS
By Andrew Agerbak, Kaj Burchardi, Steven Kok, Fabrice Lebegue, and Christian N. Schmid

For too many companies, moving to
agile software development is like

finding the perfect new strain of grass
seed—after months of searching—and
then planting the new seeds in your old
backyard. Your lawn may ultimately look a
little better, but it will take longer and the
results won’t be as great as they would be
if you had first removed the hidden tree
roots, put in new soil, and rethought the
irrigation system.

Many mainstream companies—in financial
services, health care, manufacturing, con-
sumer packaged goods, and other indus-
tries—have felt compelled to give agile soft-
ware development a try. And they have
waited expectantly for the benefits. In theo-
ry, agile’s assignment of a business leader
to development teams ensures that the
most important software changes get done
first, and its emphasis on short coding
sprints ensures that the changes are imple-
mented quickly. The fact that the quick part
doesn’t always happen has been discourag-
ing. It has some agile newcomers wonder-
ing if there’s something they’re missing.

In many cases, there is. Agile does a good
job of breaking down silos early in the soft-
ware development process. But it can
achieve only so much on its own. To turn
themselves into digitally ready competitors,
companies have to rethink the entire soft-
ware development life cycle. They need
agile, but they also need DevOps.

DevOps is an approach that integrates criti-
cal late-stage activities—like testing and
deployment planning—into the code-
writing part of software development. (See
Exhibit 1.) With its emphasis on running
multiple activities in parallel and on multi-
functional teams, DevOps represents a
break from the old “waterfall” model, in
which planning, writing, testing, and de-
ploying code were discrete steps managed
by separate departments.

While many software companies use some
form of the continuous software develop-
ment and release that are the hallmark of
DevOps, the approach (which continues to
evolve and is starting to be referred to as
DevOps 2.0 or BizDevOps by some of its

The Boston Consulting Group | Going All In with DevOps 2

more advanced practitioners) is a lot newer
outside the technology and internet services
industries. Some traditional companies,
notably in financial services, have some
DevOps pieces in place, such as automated
testing and mechanisms for provisioning
hardware quickly. (See “Leaner, Faster, and
Better with DevOps,” BCG article, March
2017.) But the scope of these practices is
limited. The companies haven’t made the
overarching changes that would allow them
to capture DevOps’ full range of benefits.

Making DevOps Work
To get the most out of DevOps, companies
must make changes in controls and gover-
nance, IT organization roles, and operating
models.

Rethink controls and governance. Most big
companies’ approach to developing and
releasing software reflects controls they put
in place years ago to maintain quality and
avoid costly mistakes. The controls may
have made sense at the outset. But as the
pace of technological change has accelerat-
ed, the controls have lost their relevance.
Now they’re just obstacles.

For instance, a control about infrastructure
provisioning—one of the hurdles that must
be surmounted before a development team
can begin its work—may have been imple-
mented in the days before virtualization.

Today, virtualization makes computing and
storage capacity available with less opera-
tional complexity than before and at far
lower cost. But we still see companies tak-
ing a month and 50-plus emails just to
provision hardware and gather all the nec-
essary permissions.

Likewise, a control requiring multiple go-
live approvals for new software may have
been justified when there were only a few
software updates a year and each one in-
volved a critical part of a monolithic sys-
tem. But it shouldn’t require two dozen
people to approve a minor tweak—like
changing the color of the screen users see.

With software now a key way of addressing
fast-changing business and customer needs,
the prolonged delays caused by controls
that have become irrelevant put companies
at a fundamental competitive disadvan-
tage. The delays can pose a reputational
risk and even a survival risk if a company
is the target of a cyberattack. (See “Devel-
op a Cybersecurity Strategy as If Your Or-
ganization’s Existence Depends on It,” Oc-
tober 2017.)

Governance is another area that requires
adjustments in the move to DevOps. This
includes adopting new approaches to fund-
ing. In agile, funding isn’t allocated on a
project basis: for a set period of time,
against a defined set of deliverables. In-

Application
development
Application

maintenance

IT operations

IT infrastructure

Business units

IT development

IT operations

Plan Code Build Deploy MonitorTest Release Operate

Continuous monitoring
and autonomic operations

Continuous
delivery

Integrated business
development teams

Continuous
integration

Continuous
deployment

Standardized and automated
infrastructure management

DEVOPS

• Teams “own” and are responsible for
a software-based product or service

• Daily “builds” of error-free software
• Automated testing
• Ability to update applications

automatically across environments

• Self-service provisioning of hardware
• Automated releases of new software

• Applications self-repair
• Capacity adjusted automatically

• Virtualization enables server and storage constraints to be addressed automatically
• Modular architecture allows services to be provisioned quickly and cheaply

AGILE

W
H

O
 D

O
ES

 T
H

E
W

O
R

K

Source: BCG analysis.

Exhibit 1 | Where Agile and DevOps Fit in the Software Development Life Cycle

https://www.bcg.com/publications/2017/technology-digital-leaner-faster-better-devops.aspx
https://www.bcg.com/publications/2017/technology-digital-leaner-faster-better-devops.aspx
https://www.bcg.com/publications/2017/technology-digital-develop-cybersecurity-strategy-your-organization-existence-depends-it.aspx
https://www.bcg.com/publications/2017/technology-digital-develop-cybersecurity-strategy-your-organization-existence-depends-it.aspx
https://www.bcg.com/publications/2017/technology-digital-develop-cybersecurity-strategy-your-organization-existence-depends-it.aspx

The Boston Consulting Group | Going All In with DevOps 3

stead, funding is allocated to critical “prod-
ucts”—like a mutual fund company’s “my
account” function or a retailer’s order-and-
ship system—that require the attention of
teams for many months or even years.
DevOps adds complexity by forcing compa-
nies to figure out how to allocate some ap-
plication maintenance and infrastructure
costs within the product funding paradigm.

Another area where DevOps should trigger
a governance change is in the decision
rights related to cloud solutions. In the
past, these decision rights belonged to the
IT organization, and no one questioned
that. But that’s changing as more business
units create software directly using cloud-
based tools.

We saw questions about such decision
rights at a company where digital product
development teams were pushing for direct
access to an Amazon Web Services account,
and the IT operations group, concerned
about standardization and security, was re-
sisting. In truth, there is no single right an-
swer to the question of where the decision
rights should lie, for this company or any
other. But it is an issue that must be tack-
led in DevOps, which redraws the boundar-
ies of software development along multiple
dimensions.

DevOps should also prompt a change in
how companies deal with buggy software.
At companies that haven’t fully adopted
DevOps, there isn’t a “you built it, you own
it” governance philosophy. Instead, if an
issue arises involving software that has
been released, IT support teams report it
through a ticket system (such as Service-
Now), and the issue becomes the responsi-
bility of an application maintenance team.
But the original developer of the code, hav-
ing gotten wind of a problem, may go back
in and try to fix it. The net result is that
sometimes both the development and
maintenance teams end up working on the
same software, at the same time, resulting
in inconsistencies, integration problems,
and stability issues. By contrast, at compa-
nies that adopt DevOps practices, issues
with released software automatically regis-
ter on the backlog of the development

teams, which are expected to make the
fixes. There is no one farther down the line
who would even think of fixing the code,
and no possibility of different departments
touching the same code simultaneously
and working at cross-purposes.

Ultimately, the best test of governance
practices is cycle time. If companies can
substantially reduce the time between
when they plan software and when they re-
lease it in a reliable, high-quality form, that
is a sign that their governance processes
are working and that they have the techni-
cal capabilities they need.

Redefine the role of the CIO and the IT
organization. If DevOps is to succeed, there
must be changes—some subtle, some more
dramatic—in the role of the chief informa-
tion officer and the information technology
organization. In companies that adopt agile
models, the specifications for new soft-
ware—and the coding work itself—become
the implicit responsibility of business units.
If this relieves the CIO of responsibility for
individual lines of code, in most cases he or
she still shoulders the larger burden of
quality. That is, the CIO must still recruit
and train software developers. He or she
must also put in place a better delivery
model, one that includes an operating
environment—standards, services, process-
es, tools, and infrastructure—that allows
developers to maximize their productivity.
The CIO must also front-load more activi-
ties in the software development life cycle.

The term of art for this sort of front-loading
is the “shift left,” referring to how one
would diagram various activities on a soft-
ware development life cycle chart. In
DevOps, technical staff that would once
have sat in the IT operations function—
whose work kicks in later—are moved into
the product development teams, where they
have a say in how the code is built. There
should also be input early on from those re-
sponsible for a company’s data architecture
and cybersecurity. The shift left of activity
and expertise is one way all the code that’s
being created—often in many different
business units—can get to market quickly
and with the necessary level of security.

The Boston Consulting Group | Going All In with DevOps 4

A particularly important CIO responsibility
with DevOps is the implementation of an
optimal infrastructure environment. The
business-oriented development teams need
infrastructure-independent platforms so
that they don’t have to worry about com-
patibility. In DevOps, managing this and
providing the application development
toolkit are significant parts of the IT orga-
nization’s responsibility.

Netflix, the global streaming video service,
provides an example of the kind of benefits
that can come from embracing DevOps.
Netflix captures these benefits through the
efforts of a central engineering operations
group (a sort of specialty IT team) whose
mandate is to maximize the performance of
newly released software and to make soft-
ware development teams more efficient.

At Netflix, developers benefit from a com-
mon set of tools, services, and infrastruc-
ture management capabilities—a “paved
road,” as Netflix calls it—to traverse the
normally bumpy path to new software cre-
ation. The paved road and the engineering
operations group have been instrumental
in helping Netflix release new code—se-
cure, reliable code—to multiple geographic
regions within minutes.

Assisting and speeding up software deploy-
ments in this way require IT staff to devel-
op skills they didn’t need previously. For in-
stance, enterprise architects must take a
much stronger hand in defining IT archi-
tecture strategy, especially with respect to
platform options. And IT organizations
must adopt technical mechanisms—like
containers and microservices—that allow
coding teams to write reusable software
and to do it faster. (See the sidebar
“DevOps’ Technical Underpinnings.”)

IT organizations must also acquire some
brand-new technical capabilities. For in-
stance, they must hire or develop quality
engineers. These engineers should be em-
bedded in the software development team
and should ensure that rigorous testing
happens early in the process. The IT opera-
tions staff must likewise acquire or develop
new expertise, such as reliability engineer-

ing and infrastructure service develop-
ment. Without these capabilities, continu-
ous delivery and continuous integration
aren’t possible, making agile’s promised
speed and reliability benefits hard to
achieve.

Remake the operating model through
automation. There is a huge benefit if a
team, instead of going through a cumber-
some approval process that might last
weeks or months, can add a feature or plug
a dangerous security hole with relatively
little organizational oversight, and in the
best case with just a few mouse clicks.
Automation, one of the pillars of DevOps,
makes that possible. But the decisions
surrounding automation are complicated,
and there is always the chance that a
company will take a while to gain its
footing. For this reason, the where and how
of introducing automation is a key decision
for any company moving to DevOps.

A good place to start is with test automa-
tion. In our experience, the benefits of cov-
ering more new code through automated
testing can on its own justify a move to
DevOps. Consider the ever-present risk of
late-stage delays and the costs they create.
With traditional waterfall and even some-
times with agile development, testing takes
place once the code is complete. Significant
problems may be discovered just as the
code is supposed to go live. By contrast, in
the DevOps paradigm, code is developed
iteratively and tested regularly. This makes
it less likely that coding issues will emerge
at the last minute. (See Exhibit 2.)

Valuable as it is, automated testing must
be rolled out in stages. Companies should
start with the parts of their architecture
where they have already started to transi-
tion to agile models. After they’ve had
some success, they can use automation to
cover more of their code.

Some of the companies that have set the
pace in digital services, such as Google,
have reliability targets well above 99%—
meaning that they expect the software they
release, with the help of automated testing,
to work immediately and in pretty much

The Boston Consulting Group | Going All In with DevOps 5

all instances. Google, of course, was built to
enable rapid software releases and service
improvements. Non–digital natives don’t
need to ensure reliability on the same scale,
but when it comes to digital services they can
learn from Google and other digitally ad-
vanced companies—and they must. After all,
a traditional company with a mission-critical
digital application—like a financial services
company rolling out a smartphone payment
feature—can no more afford to release bad
software than Google can.

With traditional companies’ legacy sys-
tems, such as payroll or enterprise resource
planning, the dynamics are necessarily a
little different. Companies can still do auto-
mated testing of their legacy systems, and
in many cases they already do. But in order
to support the faster release cycles agile

development teams expect, the tests
should be synchronized with batch process-
es, including prescheduled data transfers
and transactions. Since batch processes are
often designed to take place overnight, the
IT organization may want to run the auto-
mated tests overnight, too.

Getting Started
Companies can’t just brush aside their cur-
rent software development practices and
make a wholesale move to DevOps; it in-
volves too much change and training and
would create too much disruption with ex-
isting systems and products. DevOps needs
to be phased in.

The first step should be to find an applica-
tion that has low levels of dependency

IT staff must be familiar with various
technical tools and approaches in order
to implement DevOps. Here are seven of
the most important.

Containers. A type of virtualization that
keeps software running reliably when it
is moved from one computing environ-
ment to another. By bundling new code
with everything needed to run it, a
container makes it possible for software
development teams to ignore differences
in operating systems and underlying
infrastructure. Two open-source technol-
ogies that help with containerization are
Docker and Kubernetes.

Microservices. A programming archi-
tecture that gives developers access to
application functionality at a very
granular level. Microservices make it
easier to continually deliver and deploy
large, complex applications.

Code Repository. A database contain-
ing the source code of an application.
When centralized and actively managed,
code repositories improve the consis-
tency and stability of code, and help

avoid version control issues. Among the
open-source tools used for code reposito-
ries are Bitbucket and GitLab.

Continuous Integration. A develop-
ment practice that promotes single-
source code management and compre-
hensive automated testing, allowing
developers to add code to a common
repository as often as several times a
day, in a highly automated way. This
ensures that all development teams are
using the latest version of an application.
Open-source versions include GitLab CI
and Jenkins.

Continuous Delivery. A discipline for
building software that enables the
software to be moved to a staging area at
any time. Continuous delivery tools
include Bamboo and Jenkins.

Continuous Deployment. A practice
that allows tested software to be re-
leased, sometimes with not much more
than the push of a button. Continuous
deployment sharply reduces overhead
and can be an invaluable tool for
resolving issues quickly.

DEVOPS’ TECHNICAL UNDERPINNINGS

The Boston Consulting Group | Going All In with DevOps 6

with other applications—perhaps a pro-
curement portal for a manufacturing com-
pany or a savings platform for a bank—and
run a pilot project to learn the DevOps
model and fine-tune the practices.

In the pilot, a team of developers and IT
engineers lays out a technical plan—estab-
lishing a central code repository and creat-
ing a testing framework so testing automa-
tion can start. Once this is in place,
continuous integration and continuous de-
livery can begin. These processes make it
possible for the development team to focus
on writing code and not on manually
checking for bugs and functionality
problems.

At companies with complex legacy systems,
continuous integration and continuous de-
livery are two separate phases. By contrast,
at digital natives, both approaches are core
to software development, and a digital na-
tive may already be thinking about other
ways of enhancing the software release
process. This explains why developers at
the most digitally adept companies often
see their code fixes go live within days,
hours, or even minutes.

The DevOps pilot needn’t go on indefinite-
ly. Within six months, it should be possible
to see benefits. These typically take the
form of agility, which translates into more
software releases per week; quality, which
stems from increased testing coverage; and

efficiency, in the form of lower costs of re-
work and an overall increase in the number
of automated processes. After an introduc-
tory period like this, the company can cre-
ate a road map to start applying DevOps
practices to other software and infrastruc-
ture platforms and to other parts of its tech-
nology environment. The road map should
include a decision about the suite of tools
to be used and the sequence in which
DevOps will be implemented in other parts
of the company and for other platforms.

DevOps and the Customer
The example of a European travel compa-
ny helps demonstrate why DevOps is turn-
ing into a must-have.

The company was unable to make pricing
updates to its core booking system at the
height of its main selling season. Previous
updates had exposed the fragility of the
system, and business managers had im-
posed a policy of no changes during peak
periods.

There was nothing unusual about the com-
pany’s monolithic software infrastructure
or the policies to accommodate it. Howev-
er, the deliberate approach to software de-
velopment had left the company unable to
respond, at the most important time of
year, to new pricing or product proposi-
tions from competitors. If a seven-day trip
to Belize was suddenly being discounted to

Plan Code Build Deploy MonitorTest Release Operate

COST OF
DETECTING

ERRORS

Bug identified by a programming buddy
(pair programming)

Bug identified during
an automated user test

Design defect or bug identified by having
quality as part of the design process

Requirement or design defect identified through
close business and IT collaboration

Bug identified during a
QA review or inspection

Bug identified during systems
integration testing

Design flaw identified through
QA testing

Requirements defect identified through
a test with a real-world user

Bug identified during
an automated
performance test

Bug identified
in production

ERROR DETECTION ZONE USING BOTH
AGILE AND DEVOPS ERROR DETECTION ZONE USING AGILE ONLY

Bug identified during
independent testing

Sources: Puppet, 2016 State of DevOps Report; BCG analysis.

Exhibit 2 | With DevOps, Bugs Are Spotted Earlier and Fixed More Economically

The Boston Consulting Group | Going All In with DevOps 7

$1,800 on other travel websites, it would
still be going for $2,100 on the company’s
site. Dynamic pricing updates required a
software change, but the company’s release
process limited the speed at which such
changes could be made.

Recognizing that its software development
processes were hurting the business, the
company adopted some DevOps practices,
including continuous integration. As it did
so, the quality of its software releases and
the overall resilience of its system im-
proved to such an extent that management
lifted the change freeze. Thereafter, the
company was able to be much more
responsive to competitors’ moves during
the industry’s peak selling season.

Sooner or later, most companies are going
to find themselves in a similar position.
That is, they are going to see that one of
their competitors is doing something faster,
with fewer security and quality issues, and
at lower cost. And they are going to need to
take action to narrow the gap.

DevOps is a way to do this. The implemen-
tation of DevOps involves organization and
process changes that take place well out of
sight of most customers. But customers will
be expecting the benefits. For companies
that don’t deliver, there may not be a
second chance.

About the Authors
Andrew Agerbak is a director in the London office of The Boston Consulting Group. You may contact him
by email at agerbak.andrew@bcg.com.

Kaj Burchardi is a managing director of BCG Platinion in Amsterdam. You may contact him by email at
burchardi.kaj@bcgplatinion.com.

Steven Kok is a project leader in BCG’s London office. You may contact him by email at kok.steven@bcg.
com.

Fabrice Lebegue is a managing director of BCG Platinion in Montreal. You may contact him by email at
lebegue.fabrice@bcgplatinion.com.

Christian N. Schmid is a principal in the firm’s Munich office. You may contact him by email at
schmid.c@bcg.com.

The Boston Consulting Group (BCG) is a global management consulting firm and the world’s leading advi-
sor on business strategy. We partner with clients from the private, public, and not-for-profit sectors in all
regions to identify their highest-value opportunities, address their most critical challenges, and transform
their enterprises. Our customized approach combines deep insight into the dynamics of companies and
markets with close collaboration at all levels of the client organization. This ensures that our clients
achieve sustainable competitive advantage, build more capable organizations, and secure lasting results.
Founded in 1963, BCG is a private company with offices in more than 90 cities in 50 countries. For more
information, please visit bcg.com.

© The Boston Consulting Group, Inc. 2018. All rights reserved. 3/18

