Engineers develop quantum computers for specific low-complexity applications.

FIRST GENERATION 2018–2028
Quantum computers perform faster than classical computing in applications such as molecular simulation, R&D, and software development.

SECOND GENERATION 2028–2039
Quantum computers achieve the scale to perform advanced simulations for modeling and problem-solving.

THIRD GENERATION 2031–2050
Quantum computing could soon have a big impact on business.

THE QUBITS ARE COMING
WITH LARGE, COMPLEX PROBLEMS, QUANTUM COMPUTERS ARE FAST—REALLY FAST

Entangled qubits act together to process information almost instantaneously.

Drug development times could speed up by 20%.

GLOBAL HIGH-PERFORMANCE COMPUTING MARKET IN 2018
$10B

ESTIMATED QUANTUM COMPUTING MARKET IN THE US PHARMA/INDUSTRY
$15B to $30B

** HOW QUICKLY COULD QUANTUM COMPUTING TAKE OFF?**
Adoption will vary by industry and by the speed with which complex problems must be solved.

THE QUANTUM COMPUTING MARKET WILL EVOLVE IN THREE OVERLAPPING GENERATIONS

CONSENSUS FORECASTS FOR THE PEAK ADOPTION RATES OF QUANTUM COMPUTING

- **APPLICATIONS REQUIRING A SIGNIFICANT SPEED ADVANTAGE**
 - 80%
- **APPLICATIONS REQUIRING A MODERATE SPEED ADVANTAGE**
 - 50%
- **APPLICATIONS REQUIRING AN UNDETERMINED SPEED ADVANTAGE**
 - 25%

THE QUANTUM COMPUTING MARKET WILL EVOLVE IN THREE OVERLAPPING GENERATIONS

FIRST GENERATION 2018–2028
Engineers develop quantum computers for specific low-complexity applications.

SECOND GENERATION 2028–2039
Quantum computers perform faster than classical computing in applications such as molecular simulation, R&D, and software development.

THIRD GENERATION 2031–2050
Quantum computing could soon have a big impact on business.

PREPARING FOR A QUANTUM LEAP
Companies should engage if they are in data-intensive industries or need to run time-consuming, complex simulations.

EARLY MOVES CAN ESTABLISH A SIGNIFICANT QUANTUM COMPUTING ADVANTAGE IN SEVERAL WAYS:

- Launch initiatives to gain understanding, capital, and expertise.
- Sponsor academic research in quantum applications.
- Explore molecule simulations using quantum processors.
- Challenge R&D to follow quantum computing breakthroughs.

This infographic is based on the BCG report *The Coming Quantum Leap in Computing.*

Sources: BCG analysis; company reports; expert interviews.

© The Boston Consulting Group, Inc. 2018. All rights reserved. To find the latest BCG content and register to receive alerts on this topic or others, please visit bcg.com. Please direct questions to socialmedia@bcg.com.